Molecular Movement of the Voltage Sensor in a K Channel

نویسندگان

  • Amir Broomand
  • Roope Männikkö
  • H. Peter Larsson
  • Fredrik Elinder
چکیده

The X-ray crystallographic structure of KvAP, a voltage-gated bacterial K channel, was recently published. However, the position and the molecular movement of the voltage sensor, S4, are still controversial. For example, in the crystallographic structure, S4 is located far away (>30 A) from the pore domain, whereas electrostatic experiments have suggested that S4 is located close (<8 A) to the pore domain in open channels. To test the proposed location and motion of S4 relative to the pore domain, we induced disulphide bonds between pairs of introduced cysteines: one in S4 and one in the pore domain. Several residues in S4 formed a state-dependent disulphide bond with a residue in the pore domain. Our data suggest that S4 is located close to the pore domain in a neighboring subunit. Our data also place constraints on possible models for S4 movement and are not compatible with a recently proposed KvAP model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions of Intracellular Ions to Kv Channel Voltage Sensor Dynamics

Voltage-sensing domains (VSDs) of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K(+) ions to flow. Conformational transitions within the VSD are induced by changes in the applied voltage across the membrane field. However, several other factors not di...

متن کامل

The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a'-go-go-related gene (hERG) K+ channel.

A key unresolved question regarding the basic function of voltage-gated ion channels is how movement of the voltage sensor is coupled to channel opening. We previously proposed that the S4-S5 linker couples voltage sensor movement to the S6 domain in the human ether-a'-go-go-related gene (hERG) K+ channel. The recently solved crystal structure of the voltage-gated Kv1.2 channel reveals that the...

متن کامل

Designing voltage tunable single and multi-channel optical filter with 1DDPC nano-structure

An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...

متن کامل

An electrostatic potassium channel opener targeting the final voltage sensor transition

Free polyunsaturated fatty acids (PUFAs) modulate the voltage dependence of voltage-gated ion channels. As an important consequence thereof, PUFAs can suppress epileptic seizures and cardiac arrhythmia. However, molecular details for the interaction between PUFA and ion channels are not well understood. In this study, we have localized the site of action for PUFAs on the voltage-gated Shaker K ...

متن کامل

Designing voltage tunable single and multi-channel optical filter with 1DDPC nano-structure

An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...

متن کامل

Large-Scale Movement within the Voltage-Sensor Paddle of a Potassium Channel—Support for a Helical-Screw Motion

The size of the movement and the molecular identity of the moving parts of the voltage sensor of a voltage-gated ion channel are debated. In the helical-screw model, the positively charged fourth transmembrane segment S4 slides and rotates along negative counter charges in S2 and S3, while in the paddle model, S4 carries the extracellular part of S3 (S3b) as a cargo. Here, we show that S4 slide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2003